登录 | 注册
2018-05-17至2018-05-18 上海
导航

Nat Neuro丨清华姚骏组等利用dCas9/CRISPRi在小鼠脑内实现多基因同时抑制

来源:火石创造

dna-24559__340.jpg

基因特异性的失活策略是神经生物学研究的重要方法,对于阐释基因在神经系统中的基本生物学功能不可或缺。随着神经科学的高速发展,单一基因的敲除/敲低逐渐不足以满足研究者的要求。尤其是对于复杂的多蛋白复合物和多基因神经疾病,多重基因元素失活的条件性组合搭配正日益成为主流需求。然而,逐一构建不同基因的敲除/敲入动物模型再进行杂交,一直受限于低下的制备效率、冗长的制作周期和昂贵的成本费用,成为了实际研究中的主要瓶颈之一。因此,快捷简单地操作大脑中的基因表达的方法亟需建立。


近期,基于dCAS9的多基因激活系统已纷纷有报道出现。一个多月前,Salk生物研究所Juan Carlos Izpisua Belmonte课题组就在Cell发表相关工作,并且提出了“targeted epigenetic therapies”这个概念,并在几个小鼠疾病模型中得到验证【1】,详见此前BioArt的报道:Cell丨精确制导,安全提升,基于靶向表观遗传治疗的新一代CRISPR/Cas9技术;前不久中科院神经科学研究所杨辉研究组与上海科技大学黄鹏羽实验室合作在Nature Neuroscience杂志上也发表了相关研究论文,该研究建立了一种高效的基于CRISPR/dCas9的体内激活平台,并且在小鼠脑中实现了包括基因和长链非编码RNA在内的多个基因元件的同时激活【2】,详见BioArt此前的报道:杨辉、黄鹏羽合作组利用dCas9转基因小鼠在脑内实现多基因同时激活。尽管目前已有不少利用dCAS9操作多基因激活的报道出现,但是关于利用该技术实现多基因敲低的报道相对比较少,进展也慢一些。


2月5日,Nature Neuroscience以Technical Reports的形式在线发表了由清华大学生命科学联合中心姚骏课题组和中科院北京基因组所米双利课题组合作完成的题为“CRISPR interference-based specific and efficient gene inactivation in the brain”的研究论文,报道了他们建立的在动物脑内进行基于CRISPR interference (CRISPRi)的多重基因条件性敲低平台,为在体研究复杂蛋白复合物的功能和多基因神经疾病的发病机理提供了重要的工具。


CRISPR/Cas9基因编辑工具已被广泛用于建立转基因细胞株和动物模型。然而,该技术目前在神经科学中的应用还很局限。一方面,神经元的不可分裂的特性决定了无法以建立细胞系的方式来研究特定基因在神经元中的功能。另一方面,CRISPR/Cas9切割后产生的非同源末端连接修复常常导致非特异性的删除、插入或其它突变,导致在单细胞水平产生多种表型变化,例如杂合型、纯合失活型和野生型等,将可能对后续实验产生不必要但却可能是非常严重的干扰。


在这项研究中,研究人员利用病毒传递策略,针对神经元构建了优化的基于dCas9融合KRAB的CRISPRi系统(dCas9-KRAB,KRAB是著名的转录抑制因子)【3,4】,达到在小鼠脑内进行高效且靶向特异性的抑制功能基因表达的目的。该系统不但在单细胞水平获得均一的表型,而且在基因沉默水平上显着优于传统的RNAi技术。利用sgRNA相隔错配的“钓鱼”策略,作者进一步证明基于dCas9的CRISPRi技术在神经元中具有精确的靶向特异性,几乎不会产生脱靶效应。因而,针对神经元特异的CRISPRi技术可用于快速地构建脑内基因特异性敲低的动物模型,能够大大缩短了研究时间和花费。


作者进一步拓展该技术在动物脑内的应用,利用神经元亚群特异性的启动子条件性控制功能基因Syt1在海马齿状回兴奋性和抑制性神经元中的独立失活,以达到双向调节局部神经网络的兴奋/抑制平衡的目的。分子生物学和电生理学实验证明,条件性CRISPRi能精确控制Syt1基因在特定类型神经元中丧失功能而不影响Syt1在其它类型细胞中的表达。进一步的动物行为学测试表明,上调或下调齿状回神经网络的兴奋/抑制平衡,使得小鼠学习记忆能力出现相应的双向变化;然而,无论是平衡朝哪个方向移动,小鼠均表现出抑郁和焦虑行为。


这些基于条件性CRISPRi的实验结果表明,海马区对于动物学习记忆和精神活动的调节具有完全不同的机制。最后,作者建立了靶向Syt1及其互作蛋白网络的基因Syb2,Stx1a/b和SNAP25a的五重基因CRISPRi。这一测试采用两种不同的策略,分别是:1)多种聚合酶III型启动子独立驱动的sgRNA表达框和dCas9-KRAB共表达的一体化载体系统;2)串联表达的同种聚合酶III型启动子驱动sgRNA表达框与dCas9-KRAB独立表达的双载体系统。实验证明,这两套系统都能够在小鼠脑内实现灵活多变的多基因不同组合的高效失活。因此,针对神经元的CRISPRi能够灵活地实现小鼠脑中复杂基因网络的条件性调节。


该研究的一系列实验证明,基于病毒传递策略的CRISPRi工具,能够在动物出生后的各个阶段,包括在生理及病理状态下实现在体操作,建立神经元和动物模型,从分子到细胞,从环路到行为,解析多重基因和复杂表型之间的关联,探索复杂脑疾病的致病机制,并在此基础上寻求新型有效的治疗策略。因而,该研究工作为神经生物学研究提供了灵活而多样的基因操作工具。


据悉,清华大学生命学院及生命中心PI姚骏研究员和中科院北京基因组所米双利研究员为本文共同通讯作者,生命学院博士后郑毅和沈伟为本文共同第一作者,中科院北京基因组所博士生张健、清华生命学院博士生刘要南、喻霞、卢思瑶和陈运等为本项研究工作做出重要贡献。姚骏研究员为青年**获得者,主要从事神经疾病和突触信号传导研究,近年来作为第一作者或通讯作者在Nature、Cell、Nature Neuroscience等国际一流期刊发表论文多篇。(世联博研(Bioexcellence)世联博研Bioexcellence)


邀请函

下载邀请函

赞助企业

×
留下姓名电话和邮箱,邀请函直接发送到邮箱
*姓名:
* 电话:
* Email: