一站式生物力学和生物3D打印解决方案供应服务商

培训●交流●学习之特色

省钱、省力、省时、省事
完免费、无需舟车劳顿,无论何地、坐在家里或单位内只要能上网即可与国际生物力学名家交流、体验

一线生物力学专家同行汇聚
推动力学生物学的交流与合作

随时随地学习、探讨、交流
学习、交流、探讨生物生物学的科研现状、趋势、临床发展路径、科研实现工具和实现方法方案等

  • 世联博研快讯
  • 展会与讲座
  • 生物力学科研学习
  • 生物力学文献大
  • 3D生物打印文献
  • 客服中心
  • 承接细细胞力学和3D生物打印实验服务

    · 细胞牵张拉伸应力加载刺激培养

    · 细胞组织压力加载刺激培养

    · 三维水凝胶细胞组织牵张拉伸应力加载刺激培养服务

    · 细胞牵流体剪切应力加载刺激培养服务

    · 三维组织细胞灌流培养服务

    · 单细胞纳米压痕杨氏模量测试分析服务

    · 组织凝胶纳米压痕杨氏模量测试分析服务

    · CCII细胞损伤服务

    · Microduits微柱阵列细胞应力分布测试服务

    · 三维血管、软骨、骨组织、心脏瓣膜、皮肤应力加载培养服务

    · 单细胞应力加载、形变测量与力特性分析系统

    · regenhu细胞友好型3D生物打印服务

    · 静水压力刺激细胞组织培养

    · regenhu细胞友好型3D生物打印服务。

    定制生物力学实验装置

    · 承接细细胞力学和3D生物打印实验服务

    诚招各区经销合作商

    · 承接细细胞力学和3D生物打印实验服务

  • 2018年4月18-20日(北京●手都医科大学)五届生物力学学术研讨会

    细胞生物力学学术研讨会将于2018年4月18日至4月20日在中国北京手都医科大学学术交流中心举办。本次研讨会由手都医科大学生物医学工程学院、临床生物力学应用基础研究北京市重点实验室主办,由世联博研(北京)科技有限公司承办。

    一、会议主要议题
    生物力学与力学生物学技术交流;细胞组织应力(拉力、压力、流体剪切力)培养、细胞组织机械特性测试分析、细胞组织自主伸缩力及刚度硬细胞组织
    三维灌注培养、技术交流等。

    二、参会人员
    从事细胞力学和力学生物学领域的专家和研究人员

    三、会务费
    会议统一安排食宿,不收会务费。

    四、会务联系人
    世联博研(北京)科技有限公司:
    王雪娥010-67529703,18210996806,18618101725,13466675923
    手都医科大学临床生物力学应用基础研究北京市重点实验室:
    王辉010-83911848

    会议详情


  • 纤维丝张力和扭力测

    自动法向压痕和厚度映射

    胫骨三维轮廓测试

    机电活性材料(如结缔组织、带电水凝胶等)压缩过程中电位分布
  • 1、应力刺激培养部分

    美国flexcell国际公司注于细胞、组织力学培养产品的设计和制造30年余年。以提供te的体外细胞拉应力、压应力和流体剪切应力加载刺激系统以及配套的培养板、硅胶膜载片等耗材闻名于世,其应用文献达数千篇,以整理如下供应大家参考,如需要详细资料,请致电:010-67529703
    2019年前flexcell细胞、组织牵张、压缩、流体剪切力刺激培养文献目录下载
    2019年flexcell细胞、组织牵张、压缩、流体剪切力刺激培养文献目录下载

    2、力学特性测试分析部分

    加拿大 多功能组织材料生物力学特性、电位分布测试分析表征系统及文献目录,大家参考,如需要详细资料,请致电:010-67529703

    该系统是能集成压缩、张力、剪切、摩擦、扭转和2D/3D压痕、3D轮廓及多力混合耦连测试的一体化微观力学测试装置。能对生物组织、聚合物、凝胶、生物材料、胶囊、粘合剂和食品进行精密可靠的机械刺激和表征。允许表征的机械性能包括刚度、度、模量、粘弹性、塑性、硬度、附着力、肿胀和松弛位移控制运动。

    特点

    1、适用样品范围广:

    1、适用样品范围广:

    1.1、从骨等硬组织材料到脑组织、眼角膜等软组织材料

    1.2、从粗椎间盘的样品到细纤维丝

    2、通高量压痕测试分析

    ◆无需表面平坦,可在不规则表面压痕
    ◆压痕同时可测量厚度信息
    ◆压痕不要求压缩轴垂直于样品表面对齐
    ◆红宝石压头,坚固不易断
    ◆样品不需要从组织中收集
    ◆组织的破坏小
    ◆维持被测材料的机械环境及其与周围材料的相互作用
    ◆测试多个站点mapping

    2.1、三维法向压痕映射非平面样品整个表面的力学特性

    2.2、48孔板中压痕测试分析

    3、力学类型测试分析功能齐

    模块化集成压缩、张力、剪切、摩擦、扭转、穿刺、摩擦和2D/3D压痕、3D表面轮廓、3D厚度等各种力学类型支持,微观结构表征及动态力学分析研究

    4、高分辨率:

    4.1、位移分辨率达0.1um

    4.2、力分辨率 达0.025mN

    5、 行程范围广:50-250mm

    6、体积小巧、可放入培养箱内

    7 、高变分辨率成像跟踪分析

    8、多轴向、多力偶联刺激

    9、活性组织电位分布测试分析

    10、产品成熟,文献量达 上千篇


    多功能微观生物力学测试及电特性测量系统文献目录下载

    3、单细胞应力加载部分

    系统及文献目录,大家参考,如需要详细资料,请致电:010-67529703

    单细胞应力刺激培养系统


    细胞被均匀地限制/压缩在两个亚微米分辨率的两个平行表面之间。不同的限制高度(例如1um – 300um),允许长期细胞培养和细胞增殖,同时保持对封闭的控制
    与高分辨率光学显微镜系统兼容,可以处理足够多的细胞以进行完整的基因表达分析,可与生物功能化的微结构化底物和/或不同的基质(几何形状控制)结合使用
    可以与凝胶结合(硬度控制),兼容任何细胞培养底物(培养皿至96孔板)


    产品:



    应用:

    Cell migration 2.5D, migration and interaction of non-adhesive cells, cell squeezing, imaging of flat cells (organelles aligned in 2D), super-resolution video-microscopy (organelles move less), contractility assay, etc
    Confinement illustration
    HeLa cells: not confined, 5 ?m, 3 ?m.
    Explore examples of applications

    > Cancer invasiveness assay: Quantification of migration behaviors and migration transitions
    > Cancer aggressiveness assay: Quantification of contractility of somatic or cancer cells
    > Endocytosis assay: Improved observation of events taking place at the membrane
    > Exocytosis assay: Improved observation of events taking place at the apical membrane
    > Frustrated phagocytosis: Characterization of the mechanism
    > Immune system in a well: 2D migration and interaction of non-adherent immune cells
    > Immune cells interaction: 2D interaction of non-adherent immune cells
    > Mitotic assembly assay: Quantification of mitotic spindle disorders
    > Quantitative cell migration assay: Fast and fine analysis of cell migration properties
    文献:PUBLICATIONS



    Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells
    Y.-J. Liu, M. Piel, Cell, et al., 2015 160(4), 659-672
    Actin flows induce a universal coupling between cell speed and cell persistence
    P. Maiuri, R. Voituriez, et al., Cell, 2015 161(2), 374–386
    Geometric friction directs cell migration
    M. Le Berre, M. Piel, et al., Physical Review Letter 2013 111, 198101
    Mitotic rounding alters cell geometry to ensure efficient spindle assembly
    O. M. Lancaster, B. Baum, et al., Developmental Cell, 2013 25(3), 270-283
    Fine Control of Nuclear Confinement Identifies a Threshold Deformation leading to Lamina Rupture and Induction of Specific Genes
    M. Le Berre, J. Aubertin, M. Piel, Integrative Biology, 2012 4 (11), 1406-1414
    Exploring the Function of Cell Shape and Size during Mitosis
    C. Cadart, H. K. Matthews, et al., Developmental Cell, 2014 29(2), 159-169
    Methods for Two-Dimensional Cell Confinement
    M. Le Berre, M. Piel, et al., 2014, Micropatterning in Cell Biology Part C, Methods in cell biology, 121, 213-29

    单细胞应力加载部分系统文献目录下载


    4、细胞牵引力显微镜加载部分

    系统及文献目录,大家参考,如需要详细资料,请致电:010-67529703

    销售和可定制欧美进口细胞牵引力显微镜和微柱

    承接定制细胞微图案、微沟槽培养检测科研装置、微柱阵列、微针加工制作

    销售培训微图案、微沟槽培养检测科研装置、微柱阵列、微针加工制作设备、提供技术培训

    欧美进口设备和技术保证!


    微柱培养阵列及其特点:


    ●每张阵列尺寸为3.2 x 3.2 mm,含10 x 18个观测点,每个观测点有170个按六边形排列的微柱

    ●微柱直径5 μm,高15 μm,中心间距为12 μm

    ●微柱弹力范围1-3 nN(有其他需求可定制)

    ●标准涂层是纤维连接蛋白或胶原蛋白I

    ●细胞外基质(EDM)蛋白包可按找需求定制


    软件可用于从光学显微镜拍摄的细胞图片中提取细胞力学参数(力/微柱、微柱坐标、微柱形变、细胞的应变和应力分布等)(图3)。分析结果可保存为Excel表格,便于后续处理。

    图3

    测量原理:

    未变形的微柱在明场图片中呈较亮的圆形,周围是较暗的边,通过霍夫变换可得到其形心。发生变形的微柱呈较暗的半月形,通过图像处理可得到微柱的形变大小(图1)。由于微柱刚度已知,所以进而可得到每根微柱产生的力。

    系统组成:

    1、荧光倒置显微镜:

    主要用于常规活细胞成像,快速高灵敏度活细胞荧光成像,主要包括显微平台,成像系统,工作站

    2微柱阵列培养设备:


    将硅胶微柱阵列刻在盖玻片上(图1 A),并包被蛋白,然后置于培养皿中(图1 B)。微柱上需要包被蛋白。标准的包被蛋白有纤连蛋白或I型胶原。若需其他包被蛋白,需提前告知。每张微柱阵列可以分析120-150个细胞,得到的数据足以进行统计学分析。每种实验条件可进行2-3次实验,这样得到的结果会更加稳定。微柱阵列本身并未进行包被,在使用前需要自行包被合适的蛋白(用户自选,可购常用的包被蛋白)。

    3、光学减震台

    4、预装MicroPost细胞牵引力、内源力分析软件的计算机系统:

    软件可用于从光学显微镜拍摄的细胞图片中提取细胞力学参数:(力/微柱、微柱坐标、微柱形变、细胞的应变和应力分布等);

    做细胞如下力学特性分析,包括:

    1)、微柱形变;

    2)、细胞的应变和应力分布

    3)、细胞牵引力、内源力(cell active force)

    4)、主动收缩力

    细胞牵引力显微镜加载部分系统文献目录下载


    5、高通量细胞力学特性测试分析部分

    系统及文献目录,大家参考,如需要详细资料,请致电:010-67529703

    自德国的高通量单细胞形变测量分析系统


    该系统是一套基于微流控流体压力梯度的、在倒置显微镜的扩展起来的、集成流式细胞仪特性、荧光检测模块、温控模 块、高速成像和数据采集分析软件的高通量单细胞实时形变测量和单细胞力学性质分析系统。
    是一种以流式细胞仪的速度检测单个细胞形态和力学性质的技术!
    细胞被泵送通过微流控芯片。 每个细胞都被实时拍摄、分析和成像存储。 此外,非破坏性的力量应用于细胞,提供一种方便,稳健和高通量的技术进行生物标志物的检测,可用于基础科学和临床研究。

    探索细胞的物理特性作为生物标志物,可以将非破坏性的力量应用于细胞或珠子,并观察它们的变形。 这允许研究对物理压力的te定机械响应。

    you势亮点:

    机械力学作为一种新的生物标志物--温和无损伤
    无标记
    非破坏性的力量
    高速测量单个细胞的形变、亮度、杨氏模量等
    细胞机械特性测量高通量(1000细胞/秒)
    配有高速成像、荧光检测、温控模块
    不需要细胞分离/纯化
    文献量大、级别高文章达数十篇

    成像

    每个细胞被同时拍照、分析和储存。 这允许通过它们的光学特性来找到小亚群或区分细胞。 另外可以研究像表面拓扑或细胞对光的衰减的形态特性。

    每个获取图像的存储
    快速访问细胞大小和形态

    该高速流式细胞形变机械力学测量系统是一种以细胞计数器的速度检测单细胞形态和流变性质的技术! 细胞被泵送通过微流控芯片。 每个细胞都被实时拍摄、分析和成像存储。 此外,非破坏性的力量应用于细胞,提供一种方便,稳健和高通量的技术进行生物标志物的检测,可用于基础科学和临床研究。

    流式细胞技术

    流式单细胞力学特性测试分析系统

    细胞通过微流通道时,提取细胞变形、亮度和大小等参数,同时。 这允许实时地研究细胞属性。

    可温控和荧光检测

    实时变形细胞计数和同时荧光检测:
    荧光模块使得该系统不再只是附加了一个额外的细胞力学检测通道的流式细胞仪。它成为了生命科学实验室的得力工具 - 提供了更多视角来解决科学问题。在生物学研究中通常使用荧光流式细胞仪来鉴定和定量细胞和细胞过程。使该系统集荧光流式细胞仪和实时变形的you点于一身,形成了实时荧光形变细胞仪。光片激发设计可实现三通道1D荧光成像。除了ALL实时变形参数外,系统还会分析荧光信号实时得到峰图,速度可达每秒1000个细胞。也可在实验后处理保存的原始荧光数据,以针对te定的问题和需 求修改处理方法。
    1)根据表面marker鉴定血细胞:
    荧光模块可检测和鉴定同一样品中的三种不同荧光。利用标记的表面荧光蛋白可同时实现细胞鉴定和力学性质及形态性质测量。 下图为 G-CSF动员的外周血样品细胞群体。 标记后的细胞表面markers CD3-FITC (T-cells), CD34-PE (造血干细胞)和CD14-APC(单核细胞)荧光度检测 揭示了各细胞类型所具有的不同力学性质。
    2)一维荧光成像:
    荧光模块在激发光路径中产生一束受限光片,穿过流道,细胞会经过一束很窄的激发光幕。这样可以进行1D荧光成像,例如可用于解析沿流动方向的荧光标记结构的侧向分布。检测到的荧光峰值带有很多重要信息。荧光标记的胞内结构(如细胞核)会显示窄峰,而胞质会显示出更宽的峰。不同分裂期细胞中标记的组蛋白也会呈现出不同的峰图.
    加热模块 - 温度控制

    加热模块实现了生理温度下的测量。加热模块带有一个300 W的加热器和几个静默通风机来有效混合热空气。靠近样品处有一个传感器和一个控制单元,用以j确地将温度控制在所需值。系统的空气循环系统非常高效,当进行开放操作(如更换样品)后可以迅速恢复温度。
    高速摄像
    该成像模块是款高速明场摄像显微镜,使用同步化微秒高度LED光源减轻运动模糊,可进行慢运动摄影.每秒可记录500幅帧图像或10000帧小区域图像

    典型应用:

    1)检测细胞骨架改变:
    通过力学分析可量化细胞骨架的变化。使用松胞素D抑制微丝会导致较大的形变,降低HL60细胞的刚度。有些细胞可通过亮度和大小等图像性质区分。这就可对血样本中的红细胞、血小板甚至白细胞亚群进行鉴定和进一步研究,无需进行标记和纯化。
    2)研究既往条件效应
    以前研究,通常使用跨膜蛋白CD34来鉴定原代人外周造血干细胞(HSCs)。下图比较了从骨髓得到的CD34+ 细胞和粒细胞集落刺激因子(G-CSF)动员的外周血CD34+细胞,结果发现外周血HSCs比骨髓HSCs更硬。
    3)解析中性粒细胞激活动力学
    高测量速度和快速样品制备的特点使得观察动力学过程成为可能。下图为中性粒细胞暴露于fMLP后力学性质的改变。一些细菌会释放fMLP三肽,是一种感染信号,会激活免疫系统细胞。
    3)解析中性粒细胞激活动力学

    高通量细胞力学特性测试系统文献目录下载
  •         世联博研专注生物力学和生物打印科研服务,10年经验支持。提供3D生物打印机销售、租赁和3D生物打印科研实验委托服务。世联博研作为生物打印合作伙伴,为您提供解决方案——我们拥有专门的生物3D打印服务中心,配备多台球的生物3D打印机,设备来自瑞士regenHU,美国ALLEVI。我们拥有一支由博士和硕士组成专业的技术团队,公司在北京、广州、上海、成都、合肥、西安、苏州、哈尔滨、设立3D打印展示中心,为国广大客户提供现场观摩和打印服务。我们专注您的业务,将您的想法带入现实,我们帮您提供适合您行业的3D打印解决方案。
    regenhu 3d生物打印机应用文献 ,其应用文献达数千篇,以整理如下供应大家参考,如需要详细资料,请致电:010-67529703
    Author Title Year Journal/Proceedings Reftype DOI/URL
    Daskalakis, E., Aslan, E., Liu, F., Cooper, G., Weightman, A., Koç, B., Blunn, G. and Bartolo, P.J. Composite Scaffolds for Large Bone Defects

    [Abstract] [BibTeX]

    2020 Progress in Digital and Physical Manufacturing, pp. 250-257 inproceedings
    Bertana, V., Catania, F., Cocuzza, M., Ferrero, S., Scaltrito, L. and Pirri, C. Medical and biomedical applications of 3D and 4D printed polymer nanocomposites

    [Abstract] [BibTeX]

    2020 3D and 4D Printing of Polymer Nanocomposite Materials, pp. 325 - 366 incollection DOIURL
    Freeman, FE, Browe, DC, Nulty, J, Von Euw, S, Grayson, WL and Kelly, DJ Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering.

    [Abstract] [BibTeX]

    2019 European Cells & Materials article DOIURL
    Loai, S., Kingston, B.R., Wang, Z., Philpott, D.N., Tao, M. and Cheng, H.-L.M. Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine

    [BibTeX]

    2019 Regen Med Front.
    Vol. 1(e190004), pp. e190004
    article DOIURL
    Geetha Bai, R., Muthoosamy, K., Manickam, S. and Hilal-Alnaqbi, A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering

    [Abstract] [BibTeX]

    2019 International journal of nanomedicine
    Vol. 14(31413573), pp. 5753-5783
    article URL
    Zhuang, P., Ng, W.L., An, J., Chua, C.K. and Tan, L.P. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications

    [Abstract] [BibTeX]

    2019 PLOS ONE
    Vol. 14(6), pp. 1-21
    article DOI
    Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L. and Dvir, T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts

    [Abstract] [BibTeX]

    2019 Advanced Science
    Vol. 0(0), pp. 1900344
    article DOI
    Markstedt, K., Håkansson, K., Toriz, G. and Gatenholm, P. Materials from trees assembled by 3D printing – Wood tissue beyond nature limits

    [Abstract] [BibTeX]

    2019 Applied Materials Today
    Vol. 15, pp. 280 - 285
    article DOIURL
    Huang, B., Vyas, C., Roberts, I., Poutrel, Q.-A., Chiang, W.-H., Blaker, J.J., Huang, Z. and Bártolo, P. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration

    [Abstract] [BibTeX]

    2019 Materials Science and Engineering: C
    Vol. 98, pp. 266 - 278
    article DOIURL
    Gonzalez-Fernandez, T., Rathan, S., Hobbs, C., Pitacco, P., Freeman, F., Cunniffe, G., Dunne, N., McCarthy, H., Nicolosi, V., O'Brien, F. and Kelly, D. Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues

    [Abstract] [BibTeX]

    2019 Journal of Controlled Release article DOIURL
    Gloria, A., Frydman, B., Lamas, M.L., Serra, A.C., Martorelli, M., Coelho, J.F., Fonseca, A.C. and Domingos, M. The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds

    [Abstract] [BibTeX]

    2019 Materials Science and Engineering: C
    Vol. 98, pp. 994 - 1004
    article DOIURL
    Apelgren, P., Karabulut, E., Amoroso, M., Mantas, A., Martínez Ávila, H., Kölby, L., Kondo, T., Toriz, G. and Gatenholm, P. In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink

    [Abstract] [BibTeX]

    2019 ACS Biomater. Sci. Eng.
    Vol. 5(5), pp. 2482-2490
    article DOI
    Mehrotra, S., Moses, J.C., Bandyopadhyay, A. and Mandal, B.B. 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges

    [Abstract] [BibTeX]

    2019 ACS Appl. Bio Mater.
    Vol. 2(4), pp. 1385-1405
    article DOI
    Allig, S., Mayer, M., Arrizabalaga, O., Ritter, S., Schroeder, I. and Thielemann, C. Effect of extrusion-based bioprinting on neurospheres

    [BibTeX]

    2019 GSI-FAIR SCIENTIFIC REPORT 2017School: University of Applied Sciences, BioMEMS Lab, Aschaffenburg, Germany techreport URL
    Marques, C.F., Diogo, G.S., Pina, S., Oliveira, J.M., Silva, T.H. and Reis, R.L. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review

    [Abstract] [BibTeX]

    2019 Journal of Materials Science: Materials in Medicine
    Vol. 30(3), pp. 32
    article DOI
    Zhou, M., Lee, B.H., Tan, Y.J. and Tan, L.P. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing

    [Abstract] [BibTeX]

    2019 Biofabrication
    Vol. 11(2), pp. 025011
    article DOI
    Rotbaum, Y., Puiu, C., Rittel, D. and Domingos, M. Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures

    [Abstract] [BibTeX]

    2019 Materials Science and Engineering: C
    Vol. 96, pp. 176 - 182
    article DOIURL
    Pedrotty, D.M., Volodymyr, K., Erdem, K., Sugrue Alan, M., Christopher, L., Vaidya Vaibhav, R., McLeod Christopher, J., Asirvatham Samuel, J., Paul, G. and Suraj, K. Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium

    [BibTeX]

    2019 Circulation: Arrhythmia and Electrophysiology
    Vol. 12(3), pp. e006920
    article DOI
    Jiang, T., Munguía López, J., Flores-Torres, S., Kort-Mascort, J. and Kinsella, J. Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication

    [BibTeX]

    2019 Applied Physics Reviews
    Vol. 6, pp. 011310
    article DOI
    Filardo, G., Petretta, M., Cavallo, C., Roseti, L., Durante, S., Albisinni, U. and Grigolo, B. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold

    [Abstract] [BibTeX]

    2019 Bone & Joint Research
    Vol. 8(2), pp. 101-106
    article DOI
    Athanasiadis, M., Pak, A., Afanasenkau, D. and Minev, I.R. Direct Writing of Elastic Fibers with Optical, Electrical, and Microfluidic Functionality

    [Abstract] [BibTeX]

    2019 Advanced Materials Technologies
    Vol. 0(0), pp. 1800659
    article DOI
    Sharma, A., Desando, G., Petretta, M., Chawla, S., Bartolotti, I., Manferdini, C., Paolella, F., Gabusi, E., Trucco, D., Ghosh, S. and Lisignoli, G. Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells

    [BibTeX]

    2019 ACS Biomater. Sci. Eng. article DOI
    Pan, H.M., Chen, S., Jang, T.-S., Han, W.T., Jung, H.-d., Li, Y. and Song, J. Plant seed-inspired cell protection, dormancy, and growth for large-scale biofabrication

    [Abstract] [BibTeX]

    2019 Biofabrication
    Vol. 11(2), pp. 025008
    article DOI
    Dooley, M., Prasopthum, A., Liao, Z., Sinjab, F., McLaren, J., Rose, F.R.A.J., Yang, J. and Notingher, I. Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples

    [Abstract] [BibTeX]

    2019 Biomed. Opt. Express
    Vol. 10(4), pp. 1678-1690
    article DOIURL
    Zhang, D., Peng, E., Borayek, R. and Ding, J. Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features

    [Abstract] [BibTeX]

    2019 Advanced Functional Materials
    Vol. 0(0), pp. 1807082
    article DOI
    Rathan, S., Dejob, L., Schipani, R., Haffner, B., Möbius, M.E. and Kelly, D.J. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering

    [Abstract] [BibTeX]

    2019 Advanced Healthcare Materials
    Vol. 0(0), pp. 1801501
    article DOI
    Alison, L., Menasce, S., Bouville, F., Tervoort, E., Mattich, I., Ofner, A. and Studart, A.R. 3D printing of sacrificial templates into hierarchical porous materials

    [Abstract] [BibTeX]

    2019 Scientific Reports
    Vol. 9(1), pp. 409
    article DOI
    Yilmaz, B, Tahmasebifar, A and Baran, ET Bioprinting Technologies in Tissue Engineering

    [BibTeX]

    2019 Adv Biochem Eng Biotechnol article DOI
    Xu, Y., Peng, J., Richards, G., Lu, S. and Eglin, D. Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering

    [Abstract] [BibTeX]

    2019 Journal of Orthopaedic Translation
    Vol. 18, pp. 128 - 141
    article DOIURL
    Wang, W., Junior, J.R.P., Nalesso, P.R.L., Musson, D., Cornish, J., Mendonça, F., Caetano, G.F. and Bártolo, P. Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering

    [Abstract] [BibTeX]

    2019 Materials Science and Engineering: C
    Vol. 100, pp. 759 - 770
    article DOIURL
    Wang, W., Huang, B., Byun, J.J. and Bártolo, P. Assessment of PCL/carbon material scaffolds for bone regeneration

    [Abstract] [BibTeX]

    2019 Journal of the Mechanical Behavior of Biomedical Materials
    Vol. 93, pp. 52 - 60
    article DOIURL
    Valot, L., Martinez, J., Mehdi, A. and Subra, G. Chemical insights into bioinks for 3D printing

    [Abstract] [BibTeX]

    2019 Chem. Soc. Rev.
    Vol. 48, pp. 4049-4086
    article DOI
    Tondera, C., Akbar, T.F., Thomas, A.K., Lin, W., Werner, C., Busskamp, V., Zhang, Y. and Minev, I.R. Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping

    [Abstract] [BibTeX]

    2019 Small
    Vol. 0(0), pp. 1901406
    article DOI
    Shen, J., Wang, W., Zhai, X., Chen, B., Qiao, W., Li, W., Li, P., Zhao, Y., Meng, Y., Qian, S., Liu, X., Chu, P.K. and Yeung, K.W. 3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration

    [Abstract] [BibTeX]

    2019 Applied Materials Today
    Vol. 16, pp. 493 - 507
    article DOIURL
    Schipani, R., Nolan, D.R., Lally, C. and Kelly, D.J. Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering

    [Abstract] [BibTeX]

    2019 Connective Tissue Research
    Vol. 0(0), pp. 1-16
    article DOI
    Roopavath, U.K., Soni, R., Mahanta, U., Deshpande, A.S. and Rath, S.N. 3D printable SiO2 nanoparticle ink for patient specific bone regeneration

    [Abstract] [BibTeX]

    2019 RSC Adv.
    Vol. 9, pp. 23832-23842
    article DOI
    Romanazzo, S., Nemec, S. and Roohani, I. iPSC Bioprinting: Where are We at?

    [Abstract] [BibTeX]

    2019 Materials
    Vol. 12(15)
    article DOIURL
    Prendergast, M.E. and Burdick, J.A. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine

    [Abstract] [BibTeX]

    2019 Advanced Materials
    Vol. 0(0), pp. 1902516
    article DOI
    Mestre, R., Patiño, T., Barceló, X., Anand, S., Pérez-Jiménez, A. and Sánchez, S. Force Modulation and Adaptability of 3D-Bioprinted Biological Actuators Based on Skeletal Muscle Tissue

    [Abstract] [BibTeX]

    2019 Advanced Materials Technologies
    Vol. 4(2), pp. 1800631
    article DOI
    Marchiori, G., Berni, M., Boi, M., Petretta, M., Grigolo, B., Bellucci, D., Cannillo, V., Garavelli, C. and Bianchi, M. Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA

    [Abstract] [BibTeX]

    2019 Medical Engineering & Physics
    Vol. 69, pp. 92 - 99
    article DOIURL
    Li, J., Liu, X., Crook, J. and Wallace, G. 3D graphene-containing structures for tissue engineering

    [Abstract] [BibTeX]

    2019 Materials Today Chemistry
    Vol. 14, pp. 100199
    article DOIURL
    Kleger, N., Cihova, M., Masania, K., Studart, A.R. and Löffler, J.F. 3d printing of salt as a template for magnesium with structured porosity

    [Abstract] [BibTeX]

    2019 advanced materials
    Vol. 0(0), pp. 1903783
    article DOI
    Kjar, A. and Huang, Y. Application of Micro-Scale 3D Printing in Pharmaceutics

    [Abstract] [BibTeX]

    2019 Pharmaceutics
    Vol. 11(8)
    article DOIURL
    Fenton, O.S., Paolini, M., Andresen, J.L., Müller, F.J. and Langer, R. Outlooks on Three-Dimensional Printing for Ocular Biomaterials Research

    [Abstract] [BibTeX]

    2019 Journal of Ocular Pharmacology and Therapeutics
    Vol. 0(0), pp. null
    article DOI
    Derr, K., Zou, J., Luo, K., Song, M.J., Sittampalam, G.S., Zhou, C., Michael, S., Ferrer, M. and Derr, P. Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function

    [Abstract] [BibTeX]

    2019 Tissue Engineering Part C: Methods
    Vol. 0(ja), pp. null
    article DOI
    Daly, A.C. and Kelly, D.J. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers

    [Abstract] [BibTeX]

    2019 Biomaterials
    Vol. 197, pp. 194 - 206
    article DOIURL
    Creusen, G., Roshanasan, A., Garcia Lopez, J., Peneva, K. and Walther, A. Bottom-up design of model network elastomers and hydrogels from precise star polymers

    [Abstract] [BibTeX]

    2019 Polym. Chem., pp. - article DOI
    Costa, P.F. Translating Biofabrication to the Market

    [Abstract] [BibTeX]

    2019 Trends in Biotechnology article DOIURL
    Cofiño, C., Perez-Amodio, S., Semino, C.E., Engel, E. and Mateos-Timoneda, M.A. Development of a Self-Assembled Peptide/Methylcellulose-Based Bioink for 3D Bioprinting

    [Abstract] [BibTeX]

    2019 Macromolecular Materials and Engineering
    Vol. 0(0), pp. 1900353
    article DOI
    Cernencu, A.I., Lungu, A., Stancu, I.-C., Serafim, A., Heggset, E., Syverud, K. and Iovu, H. Bioinspired 3D printable pectin-nanocellulose ink formulations

    [Abstract] [BibTeX]

    2019 Carbohydrate Polymers
    Vol. 220, pp. 12 - 21
    article DOIURL
    Caetano, G., Wang, W., Murashima, A., Passarini, J.R., Bagne, L., Leite, M., Hyppolito, M., Al-Deyab, S., El-Newehy, M., Bártolo, P. and Frade, M.A.C. Tissue Constructs with Human Adipose-Derived Mesenchymal Stem Cells to Treat Bone Defects in Rats

    [Abstract] [BibTeX]

    2019 Materials
    Vol. 12(14)
    article DOIURL
    Azim, N., Hart, C., Sommerhage, F., Aubin, M., Hickman, J.J. and Rajaraman, S. Precision Plating of Human Electrogenic Cells on Microelectrodes Enhanced With Precision Electrodeposited Nano-Porous Platinum for Cell-Based Biosensing Applications

    [Abstract] [BibTeX]

    2019 Journal of Microelectromechanical Systems
    Vol. 28(1), pp. 50-62
    article DOIURL
    Angelopoulos, I., Allenby, M.C., Lim, M. and Zamorano, M. Engineering inkjet bioprinting processes toward translational therapies

    [Abstract] [BibTeX]

    2019 Biotechnology and Bioengineering
    Vol. 0(0)
    article DOI
    Almeida, H.A., Costa, A.F., Ramos, C., Torres, C., Minondo, M., Bártolo, P.J., Nunes, A., Kemmoku, D. and da Silva, J.V.L. Additive Manufacturing Systems for Medical Applications: Case Studies

    [Abstract] [BibTeX]

    2019 Additive Manufacturing -- Developments in Training and Education, pp. 187-209 inbook DOIURL
    Khaled, S.A., Alexander, M.R., Irvine, D.J., Wildman, R.D., Wallace, M.J., Sharpe, S., Yoo, J. and Roberts, C.J. Extrusion 3D Printing of Paracetamol Tablets from a Single Formulation with Tunable Release Profiles Through Control of Tablet Geometry

    [Abstract] [BibTeX]

    2018 AAPS PharmSciTech
    Vol. 19(8), pp. 3403-3413
    article DOI
    Zamani, Y., Mohammadi, J., Amoabediny, G., Visscher, D.O., Helder, M.N., Zandieh-Doulabi, B. and Klein-Nulend, J. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(upepsilon-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds

    [Abstract] [BibTeX]

    2018 Biomedical Materials
    Vol. 14(1), pp. 015008
    article DOI
    Li, H., Tan, Y.J. and Li, L. A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels

    [Abstract] [BibTeX]

    2018 Carbohydrate Polymers
    Vol. 198, pp. 261-269
    article URL
    Petta, D., Armiento, A.R., Grijpma, D., Alini, M., Eglin, D. and D'Este, M. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking

    [Abstract] [BibTeX]

    2018 Biofabrication
    Vol. 10(4), pp. 044104
    article DOI
    García-Lizarribar, A., Fernández-Garibay, X., Velasco-Mallorquí, F., G. Castaño, A., Samitier, J. and Ramón-Azcón, J. Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue

    [BibTeX]

    2018 Macromolecular Bioscience
    Vol. 18, pp. 1800167
    article DOI
    Gleadall, A., Visscher, D., Yang, J., Thomas, D. and Segal, J. Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance

    [Abstract] [BibTeX]

    2018 Burns & Trauma
    Vol. 6(1), pp. 19
    article DOI
    Gullo, M.R., Koeser, J., Ruckli, O., Eigenmann, A. and Hradetzky, D. Rapid Prototyping Method for 3D Printed Biomaterial Constructs with Vascular Structures

    [Abstract] [BibTeX]

    2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5729-5732 inproceedings DOI
    Gill, E.L., Li, X., Birch, M.A. and Huang, Y.Y.S. Multi-length scale bioprinting towards simulating microenvironmental cues

    [Abstract] [BibTeX]

    2018 Bio-Design and Manufacturing
    Vol. 1(2), pp. 77-88
    article DOI
    Choudhury, D., Anand, S. and Win Naing, M. The Arrival of Commercial Bioprinters - Towards 3D Bioprinting Revolution!

    [BibTeX]

    2018 International Journal of Bioprinting
    Vol. 4
    article DOI
    Agarwala, S., Lee, J.M., Ng, W.L., Layani, M., Yeong, W.Y. and Magdassi, S. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform

    [Abstract] [BibTeX]

    2018 Biosensors and Bioelectronics
    Vol. 102(Supplement C), pp. 365 - 371
    article DOIURL
    Monzón, M., Liu, C., Ajami, S., Oliveira, M., Donate, R., Ribeiro, V. and Reis, R.L. Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds

    [BibTeX]

    2018 Bio-Design and Manufacturing
    Vol. 1(1), pp. 69-75
    article DOI
    Tognato, R., Armiento, A.R., Bonfrate, V., Levato, R., Malda, J., Alini, M., Eglin, D., Giancane, G. and Serra, T. A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics

    [Abstract] [BibTeX]

    2018 Adv. Funct. Mater.
    Vol. 29(9), pp. 1804647
    article DOI
    Schaffner, M., Faber, J.A., Pianegonda, L., Rühs, P.A., Coulter, F. and Studart, A.R. 3D printing of robotic soft actuators with programmable bioinspired architectures

    [Abstract] [BibTeX]

    2018 Nature Communications
    Vol. 9(1), pp. 878
    article DOI
    Raghunath, M., Rimann, M., Kopanska, K. and Laternser, S. TEDD Annual Meeting with 3D Bioprinting Workshop

    [Abstract] [BibTeX]

    2018 CHIMIA
    Vol. 72CHIMIA International Journal for Chemistry, pp. 76-79
    article URL
    Prasopthum, A., Shakesheff, K.M. and Yang, J. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography

    [Abstract] [BibTeX]

    2018 Biofabrication
    Vol. 10(2), pp. 025002
    article DOI
    Allig, S., Mayer, M. and Thielemann, C. Workflow for bioprinting of cell-laden bioink

    [BibTeX]

    2018 Lekar a Technika
    Vol. 48, pp. 46-51
    article URL
    Wang, H., das Neves Domingos, M.A. and Scenini, F. Advanced mechanical and thermal characterization of 3D bioextruded poly(ε-caprolactone)-based composites

    [Abstract] [BibTeX]

    2018 Rapid Prototyping Journal
    Vol. 0(ja), pp. 00-00
    article DOI
    Visscher, D.O., Gleadall, A., Buskermolen, J.K., Burla, F., Segal, J., Koenderink, G.H., Helder, M.N. and van Zuijlen, P.P.M. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction

    [Abstract] [BibTeX]

    2018 Journal of Biomedical Materials Research Part B: Applied Biomaterials
    Vol. 0(0)
    article DOI
    Shi, P., Tan, Y.S.E., Yeong, W.Y., Li, H.Y. and Laude, A. A bilayer photoreceptor‐retinal tissue model with gradient cell density design: A study of microvalve‐based bioprinting

    [Abstract] [BibTeX]

    2018 Journal of Tissue Engineering and Regenerative Medicine
    Vol. 12(5), pp. 1297-1306
    article DOI
    Schmieg, B., Schimek, A. and Franzreb, M. Development and performance of a 3D‐printable Polyethylenglycol‐Diacrylate hydrogel suitable for enzyme entrapment and long‐term biocatalytic applications

    [Abstract] [BibTeX]

    2018 Engineering in Life Sciences
    Vol. 0(ja)
    article DOIURL
    de Ruijter Mylène, Alexandre, R., Inge, D., Miguel, C. and Jos, M. Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs

    [Abstract] [BibTeX]

    2018 Advanced Healthcare Materials
    Vol. 0(0), pp. 1800418
    article DOIURL
    Romanazzo, S., Vedicherla, S., Moran, C. and Kelly, D.J. Meniscus ECM‐functionalised hydrogels containing infrapatellar fat pad‐derived stem cells for bioprinting of regionally defined meniscal tissue

    [Abstract] [BibTeX]

    2018 Journal of Tissue Engineering and Regenerative Medicine
    Vol. 12(3), pp. e1826-e1835
    article DOI
    Rayate, A. and Jain, P.K. A Review on 4D Printing Material Composites and Their Applications

    [Abstract] [BibTeX]

    2018 Materials Today: Proceedings
    Vol. 5(9, Part 3), pp. 20474 - 20484
    article DOIURL
    Pereira, F.D.A.S., Parfenov, V., Khesuani, Y.D., Ovsianikov, A. and Mironov, V. Commercial 3D Bioprinters

    [Abstract] [BibTeX]

    2018 3D Printing and Biofabrication, pp. 535-549 inbook DOI
    Peiffer, Q.C. Biofabrication: Tools for new therapeutics in regenerative medicine and drug delivery

    [Abstract] [BibTeX]

    2018 School: Queensland University of Technology mastersthesis DOIURL
    Park, H.S., Lee, J.S., Jung, H., Kim, D.Y., Kim, S.W., Sultan, M.T. and Park, C.H. An omentum-cultured 3D-printed artificial trachea: in vivo bioreactor

    [Abstract] [BibTeX]

    2018 Artificial Cells, Nanomedicine, and Biotechnology
    Vol. 46(sup3), pp. S1131-S1140
    article DOI
    Ng, W.L., Qi, J.T.Z., Yeong, W.Y. and Naing, M.W. Proof-of-concept: 3D bioprinting of pigmented human skin constructs

    [Abstract] [BibTeX]

    2018 Biofabrication
    Vol. 10(2), pp. 025005
    article URL
    Ng, W.L., Goh, M.H., Yeong, W.Y. and Naing, M.W. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs

    [Abstract] [BibTeX]

    2018 Biomater. Sci.
    Vol. 6, pp. 562-574
    article DOIURL
    Mouser, V.H.M., Levato, R., Mensinga, A., Dhert, W.J.A., Gawlitta, D. and Malda, J. Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs

    [Abstract] [BibTeX]

    2018 Connective Tissue Research
    Vol. 0(0), pp. 1-15
    article DOI
    Liu, F., Hinduja, S. and Bártolo, P. User interface tool for a novel plasma-assisted bio-additive extrusion system

    [Abstract] [BibTeX]

    2018 Rapid Prototyping Journal
    Vol. 24(2), pp. 368-378
    article DOI
    Lim, S.H., Kathuria, H., Tan, J.J.Y. and Kang, L. 3D printed drug delivery and testing systems — a passing fad or the future?

    [Abstract] [BibTeX]

    2018 Advanced Drug Delivery Reviews
    Vol. 132, pp. 139 - 168
    article DOIURL
    Li, H., Tan, Y.J., Liu, S. and Li, L. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding

    [Abstract] [BibTeX]

    2018 ACS Applied Materials & Interfaces
    Vol. 10(13), pp. 11164-11174
    article DOI
    Li, H., Tan, C. and Li, L. Review of 3D printable hydrogels and constructs

    [Abstract] [BibTeX]

    2018 Materials & Design
    Vol. 159, pp. 20 - 38
    article DOIURL
    Lee, M., Bae, K., Guillon, P., Chang, J., Arlov, Ø. and Zenobi-Wong, M. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity

    [Abstract] [BibTeX]

    2018 ACS Applied Materials & Interfaces
    Vol. 10(44), pp. 37820-37828
    article DOI
    Laternser, S., Keller, H., Leupin, O., Rausch, M., Graf-Hausner, U. and Rimann, M. A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues

    [Abstract] [BibTeX]

    2018 SLAS TECHNOLOGY: Translating Life Sciences Innovation
    Vol. 0(0), pp. 2472630318776594
    article DOIURL
    Kuzmenko, V., Karabulut, E., Pernevik, E., Enoksson, P. and Gatenholm, P. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines

    [Abstract] [BibTeX]

    2018 Carbohydrate Polymers
    Vol. 189, pp. 22 - 30
    article DOIURL
    Kumari, S., Bargel, H., Anby, M.U., Lafargue, D. and Scheibel, T. Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals

    [Abstract] [BibTeX]

    2018 ACS Biomaterials Science & Engineering
    Vol. 4(5), pp. 1750-1759
    article DOI
    Kokkinis, D., Bouville, F. and Studart, A.R. 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients

    [Abstract] [BibTeX]

    2018 Advanced Materials
    Vol. 30(19), pp. 1705808
    article DOI
    Khaled, S.A., Alexander, M.R., Wildman, R.D., Wallace, M.J., Sharpe, S., Yoo, J. and Roberts, C.J. 3D extrusion printing of high drug loading immediate release paracetamol tablets

    [Abstract] [BibTeX]

    2018 International Journal of Pharmaceutics
    Vol. 538(1), pp. 223 - 230
    article DOIURL
    Kelder, C., Bakker, A.D., Klein-Nulend, J. and Wismeijer, D. The 3D Printing of Calcium Phosphate with K-Carrageenan under Conditions Permitting the Incorporation of Biological Components—A Method

    [Abstract] [BibTeX]

    2018 Journal of Functional Biomaterials
    Vol. 9(4)
    article DOIURL
    Huang, Y.-A., Ho, C.T., Lin, Y.-H., Lee, C.-J., Ho, S.-M., Li, M.-C. and Hwang, E. Nanoimprinted Anisotropic Topography Preferentially Guides Axons and Enhances Nerve Regeneration

    [Abstract] [BibTeX]

    2018 Macromolecular Bioscience
    Vol. 0(0), pp. 1800335
    article DOI

    Gungor-Ozkerim, P.S., Inci, I., Zhang, Y.S., Khademhosseini, A. and Dokmeci, M.R. Bioinks for 3D bioprinting: an overview

    [Abstract] [BibTeX]

    2018 Biomater. Sci.
    Vol. 6, pp. 915-946
    article DOI
    Gretzinger, S., Beckert, N., Gleadall, A., Lee-Thedieck, C. and Hubbuch, J. 3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures

    [Abstract] [BibTeX]

    2018 Bioprinting
    Vol. 11, pp. e00023
    article DOIURL
    Fortunato, G.M., Maria, C.D., Eglin, D., Serra, T. and Vozzi, G. An ink-jet printed electrical stimulation platform for muscle tissue regeneration

    [Abstract] [BibTeX]

    2018 Bioprinting
    Vol. 11, pp. e00035
    article DOIURL
    Firth, J., Basit, A.W. and Gaisford, S. The Role of Semi-Solid Extrusion Printing in Clinical Practice

    [Abstract] [BibTeX]

    2018 3D Printing of Pharmaceuticals, pp. 133-151 inbook DOI
    Daly, A.C., Pitacco, P., Nulty, J., Cunniffe, G.M. and Kelly, D.J. 3D printed microchannel networks to direct vascularisation during endochondral bone repair

    [Abstract] [BibTeX]

    2018 Biomaterials
    Vol. 162, pp. 34 - 46
    article DOIURL
    Couck, S., Saint-Remi, J.C., der Perre, S.V., Baron, G.V., Minas, C., Ruch, P. and Denayer, J.F. 3D-printed SAPO-34 monoliths for gas separation

    [Abstract] [BibTeX]

    2018 Microporous and Mesoporous Materials
    Vol. 255(Supplement C), pp. 185 - 191
    article DOIURL
    Chinga-Carrasco, G. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices

    [Abstract] [BibTeX]

    2018 Biomacromolecules
    Vol. 19(3), pp. 701-711
    article DOI
    Caetano, G.F., Wang, W., Chiang, W.-H., Cooper, G., Diver, C., Blaker, J.J., Frade, M.A. and Bártolo, P. 3D-Printed Poly(ɛ-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration

    [Abstract] [BibTeX]

    2018 3D Printing and Additive Manufacturing
    Vol. 0(0), pp. null
    article DOIURL
    Bastola, A., Paudel, M. and Li, L. Development of hybrid magnetorheological elastomers by 3D printing

    [Abstract] [BibTeX]

    2018 Polymer
    Vol. 149, pp. 213 - 228
    article DOIURL
    Banerjee, H. and Ren, H. Electromagnetically Responsive Soft-Flexible Robots and Sensors for Biomedical Applications and Impending Challenges

    [Abstract] [BibTeX]

    2018 Electromagnetic Actuation and Sensing in Medical Robotics, pp. 43-72 inbook DOI
    Aied, A., Song, W., Wang, W., Baki, A. and Sigen, A. 3D Bioprinting of stimuli-responsive polymers synthesised from DE-ATRP into soft tissue replicas

    [Abstract] [BibTeX]

    2018 Bioprinting article DOIURL
    Suntornnond, R., Tan, E., An, J. and Chua, C. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures

    [Abstract] [BibTeX]

    2017 Scientific Reports
    Vol. 7(16902)
    article DOIURL
    Schroeder, T.B.H., Guha, A., Lamoureux, A., VanRenterghem, G., Sept, D., Shtein, M., Yang, J. and Mayer, M. An electric-eel-inspired soft power source from stacked hydrogels

    [Abstract] [BibTeX]

    2017 Nature
    Vol. 552, pp. 214
    article DOI
    Nguyen, D., Hägg, D., Forsman, A., Ekholm, J., Nimkingratana, P., Brantsing, C., Kalogeropoulos, T., Zaunz, S., Concaro, S., Brittberg, M., Lindahl, A., Gatenholm, P., Enejder, A. and Simonsson, S. Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink

    [Abstract] [BibTeX]

    2017 Scientific Reports
    Vol. 7Scientific Reports
    article DOI
    Freeman, F.E. and Kelly, D.J. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues

    [Abstract] [BibTeX]

    2017 Scientific Reports
    Vol. 7(1), pp. 17042
    article DOI
    Levato, R., Webb, W.R., Otto, I.A., Mensinga, A., Zhang, Y., van Rijen, M., van Weeren, R., Khan, I.M. and Malda, J. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells

    [BibTeX]

    2017 Acta Biomaterialia
    Vol. 61(Supplement C), pp. 41-53
    article URL
    Bertlein, S., Brown, G., Lim, K., Jungst, T., Boeck, T., Blunk, T., Tessmar, J., J. Hooper, G., Woodfield, T. and Groll, J. Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies

    [Abstract] [BibTeX]

    2017 Advanced Materials article DOI
    Mancini, I., Vindas Bolaños, R., Brommer, H., Castilho, M., Ribeiro, A., van Loon, J., Mensinga, A., Rijen, M., Malda, J. and van Weeren, P. Fixation of hydrogel constructs for cartilage repair in the equine model: a challenging issue

    [Abstract] [BibTeX]

    2017 Tissue Engineering Part C: Methods article DOI
    Cunniffe, G., Gonzalez-Fernandez, T., Daly, A., Nelson Sathy, B., Jeon, O., Alsberg, E. and J. Kelly, D. Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering

    [Abstract] [BibTeX]

    2017 Tissue Engineering Part ATissue Engineering Part A article DOI
    Abbadessa, A., Landín, M., Oude Blenke, E., Hennink, W.E. and Vermonden, T. Two-component thermosensitive hydrogels: Phase separation affecting rheological behavior

    [Abstract] [BibTeX]

    2017 European Polymer Journal
    Vol. 92(Supplement C), pp. 13-26
    article URL
    D'Amora, U., D'Este, M., Eglin, D., Safari, F., Sprecher, C., Gloria, A., De Santis, R., Alini, M. and Ambrosio, L. Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering

    [BibTeX]

    2017 Journal of tissue engineering and regenerative medicine
    Vol. 12
    article DOI
    Bastola, A.K., Hoang, V.T. and Li, L. A novel hybrid magnetorheological elastomer developed by 3D printing

    [Abstract] [BibTeX]

    2017 Materials & Design
    Vol. 114(Supplement C), pp. 391-397
    article URL
    Zeng, Q., Macri, L., Prasad, A., Clark, R., Zeugolis, D., Hanley, C., Garcia, Y., Pandit, A., Leavesley, D., Stupar, D., Fernandez, M., Fan, C. and Upton, Z. 6.20 Skin Tissue Engineering☆

    [Abstract] [BibTeX]

    2017 Comprehensive Biomaterials II\, pp. 334 - 382 incollection DOIURL
    Thamm, C., DeSimone, E. and Scheibel, T. Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing

    [Abstract] [BibTeX]

    2017 Macromolecular Bioscience
    Vol. 17(11), pp. 1700141-n/a
    article DOIURL
    Sultan, S., Siqueira, G., Zimmermann, T. and Mathew, A.P. 3D printing of nano-cellulosic biomaterials for medical applications

    [Abstract] [BibTeX]

    2017 Current Opinion in Biomedical Engineering
    Vol. 2(Supplement C), pp. 29 - 34
    article DOIURL
    Stichler, S., Böck, T., Paxton, N.C., Bertlein, S., Levato, R., Schill, V., Smolan, W., Malda, J., Tessmar, J., Blunk, T. and Groll, J. Double printing of hyaluronic acid / poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis

    [Abstract] [BibTeX]

    2017 Biofabrication article DOI
    Sommer, M.R., Alison, L., Minas, C., Tervoort, E., Ruhs, P.A. and Studart, A.R. 3D printing of concentrated emulsions into multiphase biocompatible soft materials

    [Abstract] [BibTeX]

    2017 Soft Matter
    Vol. 13, pp. 1794-1803
    article DOI
    Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M.K., Gladman, A.S., Neels, A., Tingaut, P., Zimmermann, T., Lewis, J.A. and Studart, A.R. Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures

    [Abstract] [BibTeX]

    2017 Advanced Functional Materials
    Vol. 27(12), pp. 1604619-n/a
    article DOI
    Schaffner, M., Rühs, P.A., Coulter, F., Kilcher, S. and Studart, A.R. 3D printing of bacteria into functional complex materials

    [Abstract] [BibTeX]

    2017 Science Advances
    Vol. 3(12)
    article DOIURL
    Ribeiro, A., Blokzijl, M.M., Levato, R., Visser, C.W., Castilho, M., Hennink, W.E., Vermonden, T. and Malda, J. Assessing bioink shape fidelity to aid material development in 3D bioprinting

    [Abstract] [BibTeX]

    2017 Biofabrication article DOI
    Reitmaier, S., Kovtun, A., Schuelke, J., Kanter, B., Lemm, M., Hoess, A., Heinemann, S., Nies, B. and Ignatius, A. Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds

    [Abstract] [BibTeX]

    2017 Journal of Orthopaedic Research, pp. n/a-n/a article DOI
    Peng, W., Datta, P., Ayan, B., Ozbolat, V., Sosnoski, D. and Ozbolat, I.T. 3D bioprinting for drug discovery and development in pharmaceutics

    [Abstract] [BibTeX]

    2017 Acta Biomaterialia
    Vol. 57, pp. 26 - 46
    article DOIURL
    Paxton, N.C., Smolan, W., Böck, T., Melchels, F.P.W., Groll, J. and Juengst, T. Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability

    [Abstract] [BibTeX]

    2017 Biofabrication article DOI
    Mouser, V.H.M., Abbadessa, A., Levato, R., Hennink, W.E., Vermonden, T., Gawlitta, D. and Malda, J. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs

    [Abstract] [BibTeX]

    2017 Biofabrication
    Vol. 9(1), pp. 015026
    article URL
    Lorson, T., Jaksch, S., Lübtow, M.M., Jüngst, T., Groll, J., Lühmann, T. and Luxenhofer, R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink

    [Abstract] [BibTeX]

    2017 Biomacromolecules
    Vol. 18(7), pp. 2161-2171
    article DOI
    Ligon, S.C., Liska, R., Stampfl, J., Gurr, M. and Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing

    [Abstract] [BibTeX]

    2017 Chemical Reviews
    Vol. 117(15), pp. 10212-10290
    article DOI
    Liao, Z., Sinjab, F., Nommeots-Nomm, A., Jones, J., Ruiz-Cantu, L., Yang, J., Rose, F. and Notingher, I. Feasibility of Spatially Offset Raman Spectroscopy for in Vitro and in Vivo Monitoring Mineralization of Bone Tissue Engineering Scaffolds

    [Abstract] [BibTeX]

    2017 Analytical Chemistry
    Vol. 89(1), pp. 847-853
    article DOI
    Kuzmenko, V. Cellulose-derived conductive nanofibrous materials for energy storage and tissue engineering Applications

    [BibTeX]

    2017 School: Department of Microtechnology and Nanoscience CHALMERS UNIVERSITY OF TECHNOLOGY phdthesis URL
    Huang, Y., Zhang, X.-F., Gao, G., Yonezawa, T. and Cui, X. 3D bioprinting and the current applications in tissue engineering

    [Abstract] [BibTeX]

    2017 Biotechnology Journal
    Vol. 12(8), pp. 1600734-n/a
    article DOI
    Henriksson, I., Gatenholm, P. and Hägg, D.A. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds

    [Abstract] [BibTeX]

    2017 Biofabrication
    Vol. 9(1), pp. 015022
    article URL
    DeSimone, E., Schacht, K., Pellert, A. and Scheibel, T. Recombinant spider silk-based bioinks

    [Abstract] [BibTeX]

    2017 Biofabrication
    Vol. 9(4), pp. 044104
    article URL
    Dalton, P.D. Melt electrowriting with additive manufacturing principles

    [Abstract] [BibTeX]

    2017 Current Opinion in Biomedical Engineering
    Vol. 2(Supplement C), pp. 49 - 57
    article DOIURL
    Choi, Y., Yi, H., Kim, S. and Cho, D. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics

    [Abstract] [BibTeX]

    2017 Theranostics article URL
    Charbe, N.B., McCarron, P.A., Lane, M.E. and Tambuwala, M.M. Application of three-dimensional printing for colon targeted drug delivery systems

    [Abstract] [BibTeX]

    2017 International Journal of Pharmaceutical Investigation
    Vol. 7(2), pp. 47-59
    article URL
    Borovjagin, A.V., Ogle, B.M., Berry, J.L. and Zhang, J. From Microscale Devices to 3D Printing

    [Abstract] [BibTeX]

    2017 Circulation Research
    Vol. 120(1), pp. 150-165
    article DOIURL
    Baumann, B., Jungst, T., Stichler, S., Feineis, S., Wiltschka, O., Kuhlmann, M., Lindén, M. and Groll, J. Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds

    [Abstract] [BibTeX]

    2017 Angewandte Chemie International Edition, pp. n/a-n/a article DOI
    Aljohani, W., Ullah, M.W., Zhang, X. and Yang, G. Bioprinting and its applications in tissue engineering and regenerative medicine

    [Abstract] [BibTeX]

    2017 International Journal of Biological Macromolecules article DOIURL
    Bastola, A., Hoang Tan, V. and Lin, L. Magnetorheological Elastomer: A novel approach of synthesis

    [Abstract] [BibTeX]

    2016 2ND INTERNATIONAL CONFERENCE IN SPORTS SCIENCE & TECHNOLOGY, At NTU, Singapore conference URL
    Durual, S. Impression 3D et régénération osseuse, un mariage plein d'avenir

    [BibTeX]

    2016 Biomateriaux Cliniques
    Vol. 1BioMatériaux Cliniques, pp. 58-61
    article URL
    Gudapati, H., Dey, M. and Ozbolat, I. A comprehensive review on droplet-based bioprinting: Past, present and future.

    [Abstract] [BibTeX]

    2016 Biomaterials
    Vol. 102, pp. 20-42
    article URL
    Sears, N.A., Seshadri, D.R., Dhavalikar, P.S. and Cosgriff-Hernandez, E. A Review of Three-Dimensional Printing in Tissue Engineering

    [Abstract] [BibTeX]

    2016 Tissue Engineering Part B: Reviews
    Vol. 22(4), pp. 298-310
    article DOI
    Wang, W., Caetano, G., Chiang, W.-H., Sousa, A.L., Blaker, J., Frade, M.A.R.C.O., Frade, C. and Jorge Bártolo, P. Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration

    [Abstract] [BibTeX]

    2016 International Journal of Bioprinting
    Vol. 2, pp. 95-105
    article URL
    Visscher, D.O., Bos, E.J., Peeters, M., Kuzmin, N.V., Groot, M.L., Helder, M.N. and van Zuijlen, P.P.M. Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage.

    [Abstract] [BibTeX]

    2016 Tissue engineering Part C, Methods
    Vol. 22, pp. 573-84
    article URL
    Stichler, S., Jungst, T., Schamel, M., Zilkowski, I., Kuhlmann, M., Bock, T., Blunk, T., Tessmar, J. and Groll, J. Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication.

    [Abstract] [BibTeX]

    2016 Annals of biomedical engineering article URL
    Kesti, M., Fisch, P., Pensalfini, M., Mazza, E. and Zenobi-Wong, M. Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures

    [Abstract] [BibTeX]

    2016 BioNanoMaterials
    Vol. 17(3-4), pp. 193-204
    article DOI
    Durual, S. Emergence d'une nouvelle génération de substituts osseux synthétiques imprimés en 3D

    [BibTeX]

    2016 BIOMATERIAUX D’AUJOURD’HUI ET DE DEMAINBI
    Vol. Hors-sérieJournal de parodontologie et d'implantologie orale, pp. 63-67
    article URL
    Khati, V., Kellomäki, M. and Anderson, H.S. Development of a Robust Decellularized Extracellular Matrix Bioink for 3D Bioprinting

    [Abstract] [BibTeX]

    2016 School: Tampere University of Technology mastersthesis
    Wu, C., Wang, B., Zhang, C., Wysk, R.A. and Chen, Y.-W. Bioprinting: an assessment based on manufacturing readiness levels

    [Abstract] [BibTeX]

    2016 Critical Reviews in Biotechnology
    Vol. 0(0), pp. 1-22
    article DOI
    Wang, W.G., Chang, W.H. and Bartolo, P.J. Design, fabrication and evaluation of pcl-graphene scaffolds for bone regeneration

    [Abstract] [BibTeX]

    2016 Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) conference DOI
    Visscher, D.O., Farré-Guasch, E., Helder, M.N., Gibbs, S., Forouzanfar, T., van Zuijlen, P.P. and Wolff, J. Advances in Bioprinting Technologies for Craniofacial Reconstruction

    [Abstract] [BibTeX]

    2016 Trends in Biotechnology
    Vol. 34(9), pp. 700-710
    article DOI
    Suntornnond, R., Tan, E.Y.S., An, J. and Chua, C.K. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks

    [Abstract] [BibTeX]

    2016 Materials
    Vol. 9(9), pp. 756
    article DOIURL
    Suntornnond, R., An, J. and Chua, C.K. A Preliminary Study on the Extrusion Resolution of Pluronic F127 for Bioprinting Thermo-responsive Hydrogel Constructs

    [Abstract] [BibTeX]

    2016 Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) conference URL
    Sommer, M.R., Schaffner, M., Carnelli, D. and Studart, A.R. 3D Printing of Hierarchical Silk Fibroin Structures

    [Abstract] [BibTeX]

    2016 ACS Applied Materials & Interfaces
    Vol. 8(50), pp. 34677-34685
    article DOI
    Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K. and Yang, J. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing

    [Abstract] [BibTeX]

    2016 Biofabrication
    Vol. 8(1), pp. 015016
    article URL
    Raphael, B., Khalil, T., Workman, V.L., Smith, A., Brown, C.P., Streulli, C., Saiani, A. and Domingos, M. 3D cell bioprinting of self-assembling peptide-based hydrogels

    [Abstract] [BibTeX]

    2016 Materials Letters article DOIURL
    Passamai, V.E., Dernowsek, J.A., Nogueira, J., Lara, V., Vilalba, F., Mironov, V.A., Rezende, R.A. and da Silva, J.V. From 3D Bioprinters to a fully integrated Organ Biofabrication Line

    [Abstract] [BibTeX]

    2016 Journal of Physics: Conference Series
    Vol. 705(1), pp. 012010
    article URL
    Ozbolat, I.T., Peng, W. and Ozbolat, V. Application areas of 3D bioprinting

    [Abstract] [BibTeX]

    2016 Drug Discovery Today
    Vol. 21(8), pp. 1257-1271
    article DOIURL
    Ozbolat, I.T., Moncal, K.K. and Gudapati, H. Evaluation of bioprinter technologies

    [Abstract] [BibTeX]

    2016 Additive Manufacturing article DOIURL
    Ozbolat, I.T. and Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting

    [Abstract] [BibTeX]

    2016 Biomaterials
    Vol. 76, pp. 321-343
    article DOIURL
    Ng, W.L., Yeong, W.Y. and Naing, M.W. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering

    [Abstract] [BibTeX]

    2016 International Journal of Bioprinting
    Vol. 2(1)
    article DOIURL
    Müller, M., Öztürk, E., Arlov, Ø., Gatenholm, P. and Zenobi-Wong, M. Alginate Sulfate--Nanocellulose Bioinks for Cartilage Bioprinting Applications

    [Abstract] [BibTeX]

    2016 Annals of Biomedical Engineering, pp. 1-14 article DOI
    Minas, C., Carnelli, D., Tervoort, E. and Studart, A.R. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics

    [Abstract] [BibTeX]

    2016 Advanced Materials
    Vol. 28(45), pp. 9993-9999
    article DOI
    Melchels, F.P.W., Blokzijl, M.M., Levato, R., Peiffer, Q.C., de Ruijter, M., Hennink, W.E., Vermonden, T. and Malda, J. Hydrogel-based reinforcement of 3D bioprinted constructs

    [Abstract] [BibTeX]

    2016 Biofabrication
    Vol. 8(3), pp. 035004
    article URL
    Hou, X., Liu, S., Wang, M., Wiraja, C., Huang, W., Chan, P., Tan, T. and Xu, C. Layer-by-Layer 3D Constructs of Fibroblasts in Hydrogel for Examining Transdermal Penetration Capability of Nanoparticles

    [Abstract] [BibTeX]

    2016 Journal of Laboratory Automation article DOIURL
    Hölzl, K., Lin, S., Tytgat, L., Vlierberghe, S.V., Gu, L. and Ovsianikov, A. Bioink properties before, during and after 3D bioprinting

    [Abstract] [BibTeX]

    2016 Biofabrication
    Vol. 8(3), pp. 032002
    article URL
    Heinzelmann, E. Olten Meeting 2015 Antibiotics and Bioprinting for a better life

    [Abstract] [BibTeX]

    2016 CHIMIA International Journal for Chemistry
    Vol. 70(1), pp. 112-115
    article DOIURL
    Håkansson, K.M.O., Henriksson, I.C., de la Peña Vázquez, C., Kuzmenko, V., Markstedt, K., Enoksson, P. and Gatenholm, P. Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures

    [Abstract] [BibTeX]

    2016 Advanced Materials Technologies
    Vol. 1(7), pp. 1600096-n/a
    article DOI
    Gu, B.K., Choi, D.J., Park, S.J., Kim, M.S., Kang, C.M. and Kim, C.-H. 3-dimensional bioprinting for tissue engineering applications

    [Abstract] [BibTeX]

    2016 Biomaterials Research
    Vol. 20(1), pp. 12
    article DOI
    Gross, B., Lockwood, S.Y. and Spence, D.M. Recent Advances in Analytical Chemistry by 3D Printing

    [BibTeX]

    2016 Analytical Chemistry
    Vol. 0(0)
    article DOI
    Geven, M.A., Sprecher, C., Guillaume, O., Eglin, D. and Grijpma, D.W. Micro-porous composite scaffolds of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite prepared by low-temperature extrusion-based additive manufacturing

    [Abstract] [BibTeX]

    2016 Polymers for Advanced Technologies article DOI
    Daly, A.C., Cunniffe, G.M., Sathy, B.N., Jeon, O., Alsberg, E. and Kelly, D.J. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering

    [Abstract] [BibTeX]

    2016 Advanced Healthcare Materials
    Vol. 5(18), pp. 2353-2362
    article DOI
    Daly, A.C., Critchley, S.E., Rencsok, E.M. and Kelly, D.J. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage

    [Abstract] [BibTeX]

    2016 Biofabrication
    Vol. 8(4), pp. 045002
    article URL
    Carrel, J., Wiskott, A., Scherrer, S. and Durual, S. Large Bone Vertical Augmentation Using a Three‐Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible

    [Abstract] [BibTeX]

    2016 Clinical Implant Dentistry and Related Research
    Vol. 18(6), pp. 1183-1192
    article DOI
    Caetano, G., Violante, R., Sant’Ana, A.B., Murashima, A.B., Domingos, M., Gibson, A., Bártolo, P. and Frade, M.A. Cellularized versus decellularized scaffolds for bone regeneration

    [Abstract] [BibTeX]

    2016 Materials Letters
    Vol. 182, pp. 318-322
    article DOIURL
    Ávila, H.M., Schwarz, S., Rotter, N. and Gatenholm, P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration

    [Abstract] [BibTeX]

    2016 Bioprinting
    Vol. 1–2, pp. 22-35
    article DOIURL
    Arslan-Yildiz, A., Assal, R.E., Chen, P., Guven, S., Inci, F. and Demirci, U. Towards artificial tissue models: past, present, and future of 3D bioprinting

    [Abstract] [BibTeX]

    2016 Biofabrication
    Vol. 8(1), pp. 014103
    article URL
    Abbadessa, A., Mouser, V.H.M., Blokzijl, M.M., Gawlitta, D., Dhert, W.J.A., Hennink, W.E., Malda, J. and Vermonden, T. A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides

    [Abstract] [BibTeX]

    2016 Biomacromolecules
    Vol. 17(6), pp. 2137-2147
    article DOI
    Abbadessa, A., Blokzijl, M., Mouser, V., Marica, P., Malda, J., Hennink, W. and Vermonden, T. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    [Abstract] [BibTeX]

    2016 Carbohydrate Polymers
    Vol. 149, pp. 163-174
    article DOIURL
    Kokkinis, D., Schaffner, M. and Studart, A.R. Multimaterial magnetically assisted 3D printing of composite materials

    [BibTeX]

    2015 Nature Communications
    Vol. 6, pp. 8643
    article DOI
    Rimann, M., Bono, E., Annaheim, H., Bleisch, M. and Graf-Hausner, U. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    [Abstract] [BibTeX]

    2015 Journal of laboratory automation
    Vol. 21, pp. 496-509
    article DOI
    Ho, C.M.B., Ng, S.H. and Yoon, Y.-J. A review on 3D printed bioimplants

    [Abstract] [BibTeX]

    2015 International Journal of Precision Engineering and Manufacturing
    Vol. 16(5), pp. 1035-1046
    article DOI
    Moussa, M., Carrel, J.-P., Scherrer, S., Cattani-Lorente, M., Wiskott, A. and Durual, S. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    [Abstract] [BibTeX]

    2015 Materials
    Vol. 8Materials, pp. 2174
    article DOIURL
    Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D. and Gatenholm, P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications

    [Abstract] [BibTeX]

    2015 Biomacromolecules
    Vol. 16(5), pp. 1489-1496
    article DOI
    Knoll, S. Niere aus dem Drucker? Sag niemals nie

    [Abstract] [BibTeX]

    2015 Medizin&Technik
    Vol. 01(02), pp. 44-47
    article URL
    Rimann, M., Laternser, S., Keller, H., Leupin, O. and Graf-Hausner, U. 3D Bioprinted Muscle and Tendon Tissues for Drug Development

    [BibTeX]

    2015 CHIMIA International Journal for Chemistry
    Vol. 69(1), pp. 65-67
    article DOI
    Horvath, L., Umehara, Y., Jud, C., Blank, F., Petri-Fink, A. and Rothen-Rutishauser, B. Engineering an in vitro air-blood barrier by 3D bioprinting.

    [Abstract] [BibTeX]

    2015 Scientific reports
    Vol. 5, pp. 7974
    article
    Tan, E.Y.S. and Yeong, W.Y. Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique

    [Abstract] [BibTeX]

    2015 International Journal of Bioprinting
    Vol. 1, pp. 49-56
    article
    Schuddeboom, M. Biofabrication of Perfusable Liver Constructs

    [BibTeX]

    2015 School: Utrecht University - Faculty of Veterinary Medicine mastersthesis URL
    Schacht, K., Jüngst, T., Schweinlin, M., Ewald, A., Groll, J. and Scheibel, T. Biofabrication of Cell-Loaded 3D Spider Silk Constructs

    [Abstract] [BibTeX]

    2015 Angewandte Chemie International Edition
    Vol. 54(9), pp. 2816-2820
    article DOI
    Müller, M., Becher, J., Schnabelrauch, M. and Zenobi-Wong, M. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting

    [Abstract] [BibTeX]

    2015 Biofabrication
    Vol. 7(3), pp. 035006
    article URL
    Khaled, S.A., Burley, J.C., Alexander, M.R., Yang, J. and Roberts, C.J. 3D printing of tablets containing multiple drugs with defined release profiles

    [Abstract] [BibTeX]

    2015 International Journal of Pharmaceutics
    Vol. 494(2), pp. 643-650
    article DOIURL
    Khaled, S.A., Burley, J.C., Alexander, M.R., Yang, J. and Roberts, C.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles

    [Abstract] [BibTeX]

    2015 Journal of Controlled Release
    Vol. 217, pp. 308-314
    article DOIURL
    Kesti, M., Eberhardt, C., Pagliccia, G., Kenkel, D., Grande, D., Boss, A. and Zenobi-Wong, M. Bioprinting Complex Cartilaginous Structures with Clinically Compliant Biomaterials

    [Abstract] [BibTeX]

    2015 Advanced Functional Materials
    Vol. 25(48), pp. 7406-7417
    article DOI
    Hockaday, L. 3D Bioprinting: A Deliberate Business

    [BibTeX]

    2015 Genetic Engineering & Biotechnology News
    Vol. 35(1), pp. 14-17
    article DOI
    Graf-Hausner, U., Rimann, M., Bono, E., Laternser, S. and Bleisch, M. A novel multiwell device for drug development with bioprinted 3D human tendon and skeletal muscle tissues

    [Abstract] [BibTeX]

    2015 poster URL
    Chee Kai Chua, K.F.L. 3D Printing and Additive Manufacturing

    [BibTeX]

    2014 book URL
    Rimann, M. and Graf-Hausner, U. Bioprinting und in vitro-Modelle zur Wirkstoffentwicklung

    [Abstract] [BibTeX]

    2014 poster URL
    Markstedt, K., Tournier, I., Mantas, A., Hägg, D. and Gatenholm, P. 3D BIOPRINTING OF LIVING TISSUE WITH NANOCELLULOSE “INK”- CELLINK

    [Abstract] [BibTeX]

    2014 poster
    Kesti, M., Müller, M., Becher, J., Schnabelrauch, M., D’Este, M., Eglin, D. and Zenobi-Wong, M. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation

    [Abstract] [BibTeX]

    2014 Acta Biomaterialia
    Vol. 11, pp. 162-172
    article DOIURL
    Carrel, J.-P., Wiskott, A., Moussa, M., Rieder, P., Scherrer, S. and Durual, S. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation

    [Abstract] [BibTeX]

    2014 Clinical Oral Implants Research
    Vol. 27(1), pp. 55-62
    article DO
    Rezende, R.A., Selishchev, S.V., Kasyanov, V.A., da Silva, J.V.L. and Mironov, V.A. An Organ Biofabrication Line: Enabling Technology for Organ Printing. Part II: from Encapsulators to Biofabrication Line

    [Abstract] [BibTeX]

    2013 Biomedical Engineering
    Vol. 47(4), pp. 213-218
    article DOI
    Müller, M., Becher, J., Schnabelrauch, M. and Zenobi-Wong, M. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.

    [Abstract] [BibTeX]

    2013 Journal of visualized experiments : JoVE, pp. 1-9 article URL
    RegenHU Product information: 3D organomimetic models for tissue engineering

    [BibTeX]

    2013 Biotechnology Journal
    Vol. 8(3), pp. 283-283
    article DOI
    Müller, M., Studer, D., Maniura-Weber, K. and Zenobi-Wong, M. Novel bioprinted co-culture system fro investigating chondrogenesis

    [BibTeX]

    2012 poster
    Graf-Hausner, U., Rimann, M. and Annaheim, H. Skin Bioprinting: an innovative approach to produce standardized skin models on demand

    [Abstract] [BibTeX]

    2012 poster URL
    Bleisch, M., Kuster, M., Thurner, M., Meier, C., Bossen, A. and Graf-Hausner, U. Organomimetic skin model production based on a novel bioprinting technology

    [Abstract] [BibTeX]

    2012 poster URL
  • 更多文献
  • 世联博研 联系方式:

    世联博研(北京)科技有限公司
    世联博研客服中心 联系方式:
    Email地址:slby800@163.com
    邮寄地址:北京市昌平区回龙观镇上奥世纪中心2A座9层906,邮编:100096

    世联博研财务及帐号:

    开户银行:上海浦东发展银行北京通州支行,帐号:91390154740000493
    开户银行:邮政储蓄银行北京丰台支行,帐号:1004-8156-3080-010-001
    开户银行:中国建设银行北京海淀中关村支行,帐号:6227-0000-1085-0278-575
    开户银行:中国工商银行北京海淀支行,帐号:9558-8002-0015-1927270

    世联博研货物代理政策:

    一、关于世联博研(北京)科技有限公司
    世联博研(北京)科技有限公司,世联博研以自身丰富的生物科研知识、大量生物科研技术/商务综合型复合人才(10名生物学博士,15名生物医药专业研究生)、多年和中科院/生物医药基地商务合作经验以及良好广泛的海外关系(欧美、德国、以色列有自己的专职海外代表),代理合作国际生物科研领域近300家厂家品牌产品(ABGENE, ABNOVA, AGRISERA,AMBION, ANCELL,BIOIND, BIOSEARCHTECH, BIOVISION,BIOWORLDE, CALTAGMEDSYSTEMS,CELLSIGNAL, CELL_TRANSFECTION, CLONTECH, DOJINDO,EBIOSCIENCE, EPIGENTEK, EPITOMICS, EXBIO_CZ,FITZGERALD_FII,FRONTIERSCI,GOLDBIO,KENTSCIENTIFIC,KISKER_BIOTECH,LABSAFETY,MBLINTL,MOBIO,NANOAMOR,NEB,NIBSC_AC,NOVUSBIO,PALL,PELFREEZ_BIO,PHYTOTECHLAB,PIERCENET,PIERCE_ANTIBODIES,POLYSCIENCES,QORPAK,QUALITYBIOLOGICAL,SLBY,REAGENTS,RNDSYSTEMS,ROCKLAND_INC,SABIOSCIENCES,SIGMAALDRICH,SPHEROTECH,STREM,SUNNYLAB,TEDIA,THERMOSCIENTIFIC,THERMO,TOCRIS,等国际生物品牌产品,产品涉及生物试剂、生物耗材、生物科研仪器—世联博研(北京)科技有限公司专注国际生物产品(试剂、医药、科研耗材、科研仪器)原装进口
    二、代理条件:
    1、理机构必须具有企业经营实体,有长期市场管理和推广技巧能力的工作人员,能立进行财务结算。同时能在其管理区域
    的市场进行代理产品的推广、客户开发、销售、维护等工作。
    2、有良好大学高校、中学实验室关系、良好的医院/诊所关系、良好的研究院/所关系;
    3、有良好生物医药领域知识人才者更佳;
    4、公司无不良记录;
    5、热爱、专注生物科研事业;
    三、代理费用:
    申请成为世联博研(北京)科技有限公司的代理商,签订一年的产品代理协议,不收取任何代理加盟费,代理有责任在所属区域内主动宣传产品功能,每个月完成5000元(人民币 )产品的销售任务,连续两个月没有销售业绩的停止代理商积分功能,代理资格保留。半年无销售业绩的,自动解除代理协议。
    四、代理权限:
    1、代理商在所属市区域范围内销售,不得跨省分/城市销售。
    2、可以代理世联博研任何产品;
    3、享受世联统一的客户服务和售后维护资源;
    4、赠送有业务能力良好的生物医药版《企业业管管理系统》,功能 包括,采购订货管理、报价管理、合同管理、人事管理、 出入库管理、财务往来管理、系统权限设置管理等
    5、世联博研实行代理商商务积分制度,凭积分可直接兑换现金
    详情垂询国免费客服电话:,010-67529703,索取代理商政策